Pour gérer vos consentements :

Intelligence artificielle : une adoption orientée R&D, IT et support client

Le groupe d’édition O’Reilly Media a publié les résultats d’une enquête* sur les projets d’intelligence artificielle (IA) effectivement déployés dans les entreprises.

1300 professionnels, responsables informatiques et décideurs métiers, ont été interrogés. Les technologies, la finance et la santé sont les trois secteurs les plus représentés.

81% des répondants travaillent pour des organisations qui utilisent l’IA en production. Pour quels usages ? 50% citent avant tout la R&D, 34% le service client, 33% les services IT.

Parmi les organisations qui adoptent l’apprentissage profond (deep learning) et par renforcement (reinforcement), 86% déclarent s’appuyer sur des données structurées (logs, séries chronologiques, données géospatiales) pour entraîner leurs systèmes d’IA.

Elles devancent ainsi le texte (69%), les images/vidéos (53%) et l’audio (22%).

Les principaux outils d’apprentissage automatique (machine learning) utilisés sont :

1. TenSorFlow (cité par 55% des répondants)
2. Sickit-learn (48%)
3. d’autres outils open source (43%)
4. Keras (34%)
5. Pytorch (29%)

Qu’en est il de l’investissement ?

5% du budget IT

60% des répondants prévoient de consacrer au moins 5% de leur budget IT à l’IA durant l’année 2019. Une minorité (19%) envisage d’y investir plus de 20% de ce budget.

Mais des freins font obstacles à une adoption étendue de l’IA.

À commencer par une culture d’entreprise qui fait encore peu de place à l’IA (mentionnée par 23% du panel). Le manque de données pertinentes (19%) et le déficit de profils qualifiés (18%) sont considérés comme d’autres obstacles.

En outre, 57% des organisations manquent de compétences en machine learning et en science de données. 47% recherchent également des profils capables d’identifier et valoriser des cas d’usage professionnel de l’IA.

Enfin, 39% peinent à recruter des ingénieurs data.

*Enquête menée d’octobre à novembre 2018 auprès de 1300 professionnels d’ETI et de grands groupes. (Source: AI Adoption in the Enterprise.)

Recent Posts

Cloud : ce que l’alliance Euclidia demande à l’Europe

Pour Euclidia, la cybersécurité ne peut être l'unique réponse aux objectifs de confiance dans le…

6 heures ago

NegaOctet se concrétise : quels seront ses premiers usages ?

Le projet « green IT » NegaOctet a officiellement produit ses premiers livrables exploitables. Que…

12 heures ago

Nobelium : un parfum de SolarWinds en France

L'ANSSI attire l'attention sur des campagnes de phishing sévissant en France. Elle les attribue à…

14 heures ago

Hyperconvergence logicielle : la question du rapport qualité-prix

Les offres d'hyperconvergence logicielle dont le Magic Quadrant distingue l'exhaustivité n'apparaissent pas forcément comme les…

15 heures ago

Cinov Numérique : Emmanuelle Roux succède à Alain Assouline

Elue présidente de Cinov Numérique, Emmanuelle Roux affirme le rôle clé des PME de l'IT…

15 heures ago

AWS : une stratégie mainframe qui passe par Micro Focus

AWS lance, en phase expérimentale, un kit de migration mainframe-cloud qui repose sur des outils…

2 jours ago