Machine Learning : TensorFlow 2.0 dope l’apprentissage machine

Data & StockageDeep LearningLogicielsMachine Learning

TensorFlow 2.0 est conçu pour faciliter le développement d’applications de machine learning grâce, entre autres, à une intégration renforcée avec Keras.

Want create site? Find Free WordPress Themes and plugins.

La version 2.0 stable de TensorFlow, le framework d’apprentissage machine (ML) rendu open source par Google, est disponible.

« Grâce à une intégration étroite de Keras dans TensorFlow, à l’Eager execution par défaut et à une exécution des fonctions Pythonic, TensorFlow 2.0 rend l’expérience de développement d’applications aussi familière que possible pour les développeurs Python_ », a expliqué l’équipe du projet sur Medium.

Quelles sont les principales améliorations de cette version 2.0 ?

Keras, multi-GPU, TensorFlow.js…

– une intégration renforcée avec l’API Keras pour développer et entraîner des modèles d’apprentissage profond (deep learning) ;
– l’Eager execution par défaut ;
– la standardisation du format de fichier SavedModel « pour exécuter des modèles sur divers runtimes, dans le cloud, le web, les navigateurs, Node.js, les systèmes mobiles et embarqués » ;
– le support du multi-GPU ;
– l’interface de programmation (API) Distribution Strategy pour « distribuer des scénarios d’entraînement avec un minimum de changements dans le code » ;
– une API Dataset pour un accès à différents jeux de données via une interface standard ;
– une ouverture vers les développeurs JavaScript avec TensorFlow.js.

« Nous continuons également à investir dans le langage Swift avec la bibliothèque Swift for TensorFlow », a précisé Laurence Moroney, responsable de la relation développeurs chez Google.

Et d’ajouter : « pour les chercheurs repoussant les limites du machine learning (ML), nous avons beaucoup investi dans l’API de bas niveau de TensorFlow : nous exportons maintenant toutes les opérations utilisées en interne et fournissons des interfaces héritables pour des concepts cruciaux tels que les variables et les points de contrôle. Cela permet [aux développeurs] de construire sur les composants internes de TensorFlow sans avoir à reconstruire TensorFlow. »

L’ensemble sera détaillé lors du TensorFlow World. L’évenement se tiendra du 28 au 31 octobre 2019 à Santa Clara (Californie).

(photo via Twitter @TensorFlow)

Did you find apk for android? You can find new Free Android Games and apps.

Lire aussi :