Pour gérer vos consentements :
Categories: Composants

Des chercheurs suisses mettent au point une nouvelle technologie de mémoire flash plus performante

Des chercheurs du laboratoire LANES (Laboratory of Nanometer Electronics and Structure) de l’EPFL (École Polytechnique Fédérale de Lausanne) ont savamment utilisé deux matériaux – molybdénite et graphène – aux propriétés électroniques avantageuses pour élaborer un dispositif de stockage de l’information, à l’instar des cellules de mémoire non volatile de type flash. Leurs travaux ouvrent des perspectives de miniaturisation et de performances accrues, de consommation électrique réduite et de flexibilité des dispositifs.

Un savant assemblage de molybdénite et de graphène

Il s’agit de tirer profit des qualités intrinsèques de ces deux matériaux qui pourraient prendre dans le futur la relève du silicium. Le molybdénite est un minéral qui présente des propriétés semi-conductrices grâce à une énergie de bande non nulle comme l’ont démontré en 2011 des chercheurs de l’EPFL.

Le graphène possède également des propriétés très prometteuses pour la microélectronique. S’il est conducteur sous sa forme naturelle, il est toutefois nécessaire de le transformer en semi-conducteur pour la réalisation de transistors. Mais les chercheurs ont fait appel au molybdénite pour ses propriétés semi-conductrices alors que le graphène a été utilisé pour ses propriétés conductrices. « Pour notre modèle de mémoire, nous avons combiné les propriétés uniques électroniques de MoS2 avec la conductivité extraordinaire du graphène », explique Andras Kis, auteur de l’étude et directeur du LANES.

Un prototype de mémoire flash prometteur

Le transistor à effet de champ élaboré est constitué d’une monocouche de MoS2 (sulfure de molybdène qui forme le molybdénite) en lieu et place de l’habituel silicium tandis que les électrodes sont réalisées en graphène. Le dispositif est coiffé de plusieurs couches de graphène qui piègent les électrons et mémorisent ainsi la charge électrique; il s’agit-là d’un point mémoire. Les propriétés semi-conductrices du MoS2 assurent un passage de l’état bas (« 0 ») à l’état haut (« 1 ») très aisé sans grande consommation électrique.

La structure chimique des matériaux à deux dimensions – une couche est constituée d’un seul atome – offre des perspectives pour la miniaturisation et confère une certaine flexibilité aux dispositifs. « La combinaison de ces deux matériaux nous a permis de faire de grands progrès dans la miniaturisation, et aussi en utilisant ces transistors nous pouvons réaliser des dispositifs nanoélectroniques souples », explique Andras Kis.

Les résultats de recherche de l’équipe du LANES ont été publiés dans la revue AC Nano.

Recent Posts

Après la NAND, Intel dit stop à la gamme Optane

Après avoir vendu son activité NAND, Intel tire un trait sur la technologie 3D XPoint,…

2 semaines ago

Google Analytics : la Cnil a posé les règles du jeu

Près de six mois ont passé depuis de que la Cnil a déclaré l'usage de…

2 semaines ago

Truffle 100 France : le top 20 des éditeurs de logiciels

Truffle 100 France : qui sont les 21 entreprises qui ont dépassé, en 2021, les…

2 semaines ago

Cloud : AWS brocarde les politiques de licences Microsoft

Un dirigeant d'Amazon Web Services dénonce des "changements cosmétiques" apportés par Microsoft à ses politiques…

2 semaines ago

Sécurité du code au cloud : Snyk Cloud, un joker pour développeurs

Snyk officialise le lancement de sa solution de sécurité cloud pour développeurs, Snyk Cloud, fruit…

2 semaines ago

Cegid accroche Grupo Primavera à son tableau d’acquisitions

Cegid va absorber Grupo Primavera, plate-forme de logiciels de gestion d'entreprise née dans la péninsule…

2 semaines ago