Pour gérer vos consentements :

Photon : Salesforce applique le langage naturel à SQL

Proposer une interface en langage naturel pour interroger les bases de données relationnelles : c’est le principe de Photon.

Salesforce Research élargit sa communication à propos de ce projet qui a débouché, voilà quelques semaines, sur la publication d’un prototype.

Le groupe américain n’en est pas à ses premiers travaux dans le domaine. Il est notamment à l’origine du modèle Seq2SQL et du jeu de données WikiSQL utilisé pour l’entraîner.

Avec Photon, son ambition est de tendre vers un système « universel », face à un constat : le manque de compatibilité entre les « dialectes » de SQL qu’utilisent les principaux SGBD.

Photon comprend un interpréteur sémantique, un module de correction de requêtes, un moteur de base de données et un générateur de réponses.

La requête en langage naturel et le schéma de la base de données cible sont concaténés en une séquence encodée avec BERT, puis avec un réseau neuronal de type LSTM. La partie « question » fait l’objet un encodage supplémentaire. Un système de recherche de synonymes à partir des noms de champs intervient en renfort.

Chaque nom de table est précédé par l’indicateur T ; chaque nom de champ, par C.

Correction intégrée

Cet ensemble est transmis générateur de réponses… sous réserve d’être traduisible. Dans la négative, le module de correction prend le relais. Objectif d’assister l’utilisateur dans la reformulation de sa requête en mettant en avant les portions problématiques.
Salesforce Research l’a entraîné à partir d’une adaptation du corpus Spider dédié aux benchmarks « text-to-SQL ». Ce en injectant des questions intraduisibles et en utilisant l’API Google Cloud Translation pour maintenir la cohérence grammaticale.

Le taux de réussite s’élève à 87,6 % pour l’identification des requêtes intraduisibles. Et à 83,6 % pour la détection des portions problématiques. Ils avoisinent 60 % avec un LSTM « de base ».

L’interpréteur atteint quant à lui 63,2 % de précision sur Spider, dans les eaux de RYANSQL.

Pour l’utilisateur final, l’interface se compose d’une fenêtre de saisie, d’un aperçu du schéma et d’une zone pour les résultats. Photo accepte aussi les requêtes SQL « traditionnelles ».

Salesforce Research entend approfondir ses travaux en introduisant notamment les requêtes à la voix. L’autocomplétion est aussi sur la liste. Tout comme l’affichage des traductions de requêtes, « lorsque ce sera pertinent ».

Illustration principale via shutterstock.com

Recent Posts

Cloud : ce que l’alliance Euclidia demande à l’Europe

Pour Euclidia, la cybersécurité ne peut être l'unique réponse aux objectifs de confiance dans le…

6 heures ago

NegaOctet se concrétise : quels seront ses premiers usages ?

Le projet « green IT » NegaOctet a officiellement produit ses premiers livrables exploitables. Que…

13 heures ago

Nobelium : un parfum de SolarWinds en France

L'ANSSI attire l'attention sur des campagnes de phishing sévissant en France. Elle les attribue à…

14 heures ago

Hyperconvergence logicielle : la question du rapport qualité-prix

Les offres d'hyperconvergence logicielle dont le Magic Quadrant distingue l'exhaustivité n'apparaissent pas forcément comme les…

15 heures ago

Cinov Numérique : Emmanuelle Roux succède à Alain Assouline

Elue présidente de Cinov Numérique, Emmanuelle Roux affirme le rôle clé des PME de l'IT…

15 heures ago

AWS : une stratégie mainframe qui passe par Micro Focus

AWS lance, en phase expérimentale, un kit de migration mainframe-cloud qui repose sur des outils…

2 jours ago