Pour gérer vos consentements :
Categories: Composants

Transistor : la barrière du térahertz est « à portée de main »

Transférer des quantités substantielles de données en un éclair ou encore obtenir des images avec une résolution extrêmement élevée, voici certaines des applications que le térahertz porte en germes.

Cette nouvelle frontière en terme de fréquence ne paraît aujourd’hui plus hors de portée, grâce à un nouveau record de vélocité atteint par un transistor bipolaire.

Une technologie robuste et industrialisable

C’est une équipe constituée par l’institut IHP (Innovations for High Performance), basé à Leibniz en Allemagne, et par le Georgia Institute of Technology, situé à Atlanta aux Etats-Unis, qui a mis au point ce transistor ultra rapide.

Gravé dans une technologie BiCMOS 130 nm d’IHP, il a présenté une fréquence de transition (fréquence à laquelle le gain du transistor vaut 1) de 798 GHz à une température de 4,3 kelvins (soit -269°C). Notons qu’il s’agit d’une technologie Silicium-Germanium (SiGe) et non AsGa. Cette dernière est associée à des transistors bipolaires plus véloces, mais elle est plus onéreuse.

Le dernier record a été battu de plus de 250 GHz puisqu’il s’agissait de 417 GHz toujours avec une technologie SiGe.

Si le record a été battu à une température extrêmement faible, le professeur John Cressler du Georgia Tech estime que le transistor peut également atteindre une fréquence plus élevée que celle du précédent record à température ambiante. « De plus, je crois que ces résultats indiquent également que l’objectif de dépasser la « barrière du térahertz » – avec un transistor fabriqué dans une technologie de silicium-germanium robuste et manufacturable – est à portée de main. »

Une nouvelle ère dans l’exploitation des ondes électromagnétiques

Le térahertz correspond à une fréquence de 1 000 Gigahertz (et donc à une longueur d’onde de 0,3 mm). On parle actuellement d’applications térahertz quand la fréquence dépasse déjà 100 GHz (ou 300 GHz, fréquence qui correspond à une longueur d’onde de 1 mm). A ces fréquences, les ondes électromagnétiques pénètrent aisément dans les matériaux sans les ioniser et ne présentent donc pas de caractère nocif.

Le champ d’applications des circuits électroniques qui mettent en œuvre des fréquences dépassant ce seuil est de ce fait très vaste. Dans le domaine des télécommunications, il permettrait d’atteindre de très hauts débits. Il s’étend également aux radars, aux réseaux sans fils et aux domaines agro-alimentaires et bio-médicaux.

Ces recherches ont fait l’objet d’une publication dans IEEE Electron Device Letters.

Crédit photo : Georgia Tech (Rob Felt)


Voir aussi
Silicon.fr étend son site dédié à l’emploi IT
Silicon.fr en direct sur les smartphones et tablettes
Silicon.fr fait peau neuve sur iOS

Recent Posts

Pistage : les navigateurs ne s’attaquent pas qu’aux cookies

Dans la lignée de Brave, Firefox met en place un mécanisme de filtrage de certains…

13 heures ago

Open Source : la Fondation Linux veut normaliser l’accès aux DPU

L’effort porte sur la standardisation de la pile logicielle prenant en charge les processeurs de…

15 heures ago

vSphere+ : qu’y a-t-il dans la vitrine multicloud de VMware ?

VMware a structuré une offre commerciale favorisant l'accès à des capacités cloud à travers vCenter.…

15 heures ago

Le PEPR cybersécurité prend forme : les choses à savoir

Le PEPR rattaché à la stratégie nationale de cybersécurité a connu une forme d'officialisation la…

20 heures ago

ESN : Numeum s’étoffe et précise ses priorités

Numeum, qui réprésente les ESN et éditeurs de logiciels en France, a précisé sa feuille…

2 jours ago

HPE Discover 2022 : Red Hat rejoint l’écosystème GreenLake

OpenShift, RHEL, Ansible... Red Hat va proposer une version sur site avec paiement à l'usage…

2 jours ago